

canalrivertrust.org.uk/stem

Objectives

1. Describe what **water pressure** is.

2. Understand one key feature of water pressure.

3. Apply the concept of water pressure to the challenges of designing a canal lock.

canalrivertrust.org.uk/stem

Developed with support from

What is water pressure?

Water pressure is the **force applied by water** on its
surroundings. It applies this force **because of its weight.**


Do your ears sometimes hurt when you dive down too deep?

What does it feel like to dive to the bottom of a deep pool?

Does water **weigh** anything?

The Experiment: Investigating water pressure

- 1. Fill a bottle with water to the green line
- 2. Use a stopwatch to time 10 seconds
- 3. Position the bottle over a jug
- 4. Open the cap and time how much water escapes in 10 seconds
- 5. Record the volume of water that escaped on the results table
- 6. Repeat the experiment 3 times

Do you think the **amount of water** that **escapes** each time will be the **same**? Why?

Results

As the depth of water increases, water pressure increases. WHY?

Water has a weight - so as the depth increases so does the weight.

Water pressure formula

Pressure(Pa) =

Height of water (m)

- x Density of fluid (kg/m³)
- x Gravity (m/s²)

Do you think the amount of water that escapes will be the same? Why?

(Density of water= 1,000kg/m³) (Gravity=9.8m/s²)

canalrivertrust.org.uk/stem

Real life examples - Bath Deep Lock

Can you work out the water pressure using the formula?

Water depth 5.9m

Rolls-Royce

Real life examples – Wolverley Court Lock

Can you work out the water pressure using the formula?

Water depth 1.82m

Real life examples

Remember to check your units!

Answers

Pressure = density x gravity x height

Bath Deep Lock Pressure:

 $= 1,000 \times 9.8 \times 5.9$

= 57,820 Pa

Wolverley Court Lock Pressure:

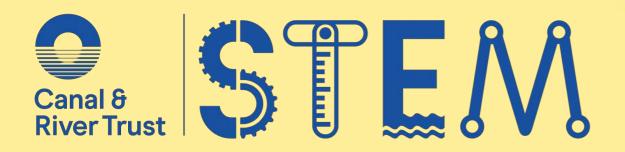
 $= 1,000 \times 9.8 \times 1.82$

= 17,836 Pa

What does this mean for engineering?

Robust construction – thick wood and strong bolts

canalrivertrust.org.uk/stem


Canal & River Trust charity number: 1146792

port from

What did you discover?

- What is water pressure?
- Describe one of the key features of water pressure.
- What could this mean for designing canal locks?

Extension activities

Drainage

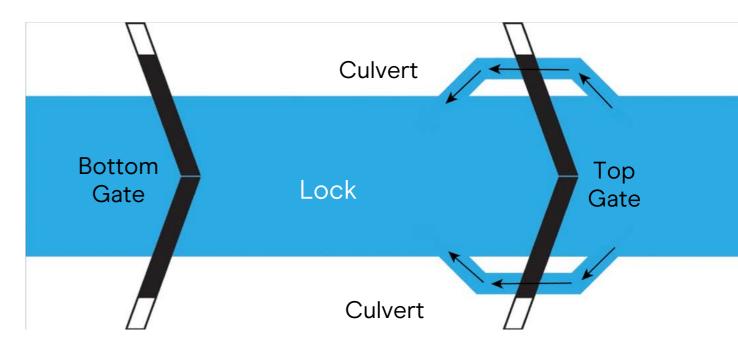
time


Looking at lock gate design

Plotting results on a graph

canalrivertrust.org.uk/stem

Canal & River Trust charity number: 1146792



Mitre gates

- Miter gates are designed so that they are held closed by the pressure of water at a higher level.
- A small difference in depth between the lock and the canal means there is a difference in water pressure.
- This exerts a force on the gates, securely holding them together as the lock fills.

Why do the **lock gates** in the diagram **meet at an angle**?

View from above

Mitre gates

Why put the culvert to fill the lock and the paddle to empty the lock at the bottom of the canal?

Bottom

Gate

Paddle

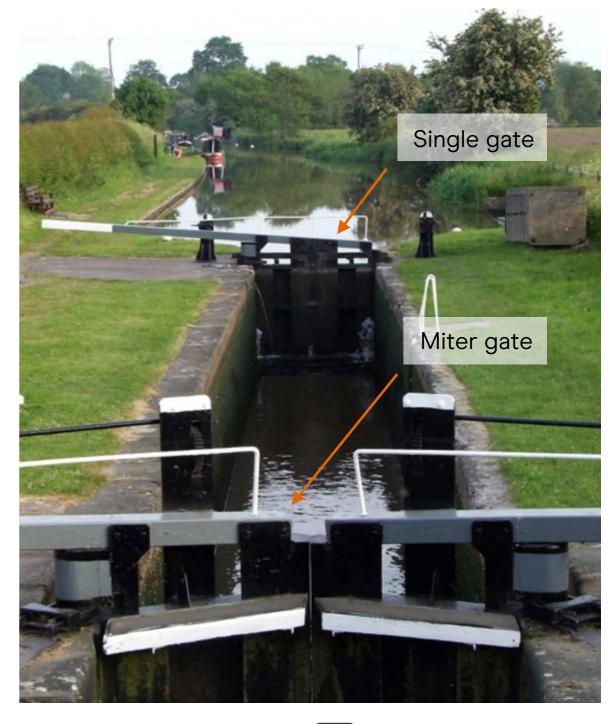
Greater depth = greater pressure so the lock fills and empties more quickly

View from the side

Lock

Top Gate

Culvert



Lock gate design

Some lock gates don't use the Miter Gate format, they use a single gate. Why do you think this is? When would you use a single gate?

- Cost a single gate is cheaper to make, install and maintain
- Easier and quicker you only need people to open one gate
- Narrow locks smaller lock gates are required
- Upper Chamber on the top end the gate is shallower and weighs less

Lock Design

Plenary

Discuss in pairs one thing you have learnt in this activity.

Can you relate this to any other real-life examples?