

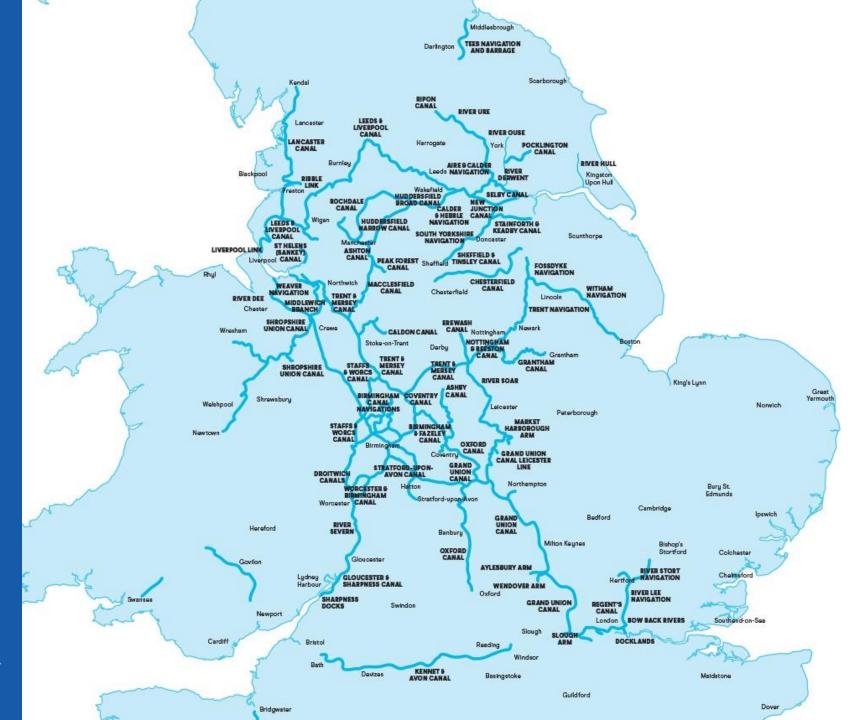
How resilient are canal fisheries to invasive species: a consideration of the ecological, legal, financial and practical aspects with special reference to the Zander, an introduced piscivorous fish

Prof Phillip Smith, University of Hertfordshire, UK John Ellis, Canal & River Trust, UK

Structure

- The Canal & River Trust
- The 'function' of canal fisheries (to balance ecological, sporting, wellbeing, statutory duty to provide fishing on cruising waterways)
- Invasive species and threats to canal fisheries and Sites of Special Scientific Interest
- Case Study: Zander

Canal & River Trust



The Canal & River
Trust (the Trust)
manage most of the
canal system in the
UK. It brings to life
2,000 miles of canals
and rivers across
England and Wales.

Map Key

Canal & River Trust waterways

© Crown copyright and database rights, 2013, Ordnance Survey 100030994. © Next Perspectives, 2013. Contains Royal Mail data, © Royal Mail copyright and database right, 2013. Contains National Statistics data, © Crown copyright and database right, 2013

Canal & River Trust

- We are a waterways and wellbeing charity
- Bringing to life 2,000 miles of canals and rivers across England and Wales
- Waterways have the power to make a positive difference to our lives
- By bringing communities together to value and help us care for their local waterway

The 'function 'of canal fisheries

- A dedicated team manage the fisheries within our canals
- 'To balance ecological, sporting, wellbeing, statutory duty to provide fishing on cruising waterways'
- Fisheries contribute to the overall aim of making "life better for millions of people across England and Wales" and to support health and wellbeing
- 8 million people live within 1km of a canal so important as often nearest place to fish for new anglers, particularly children

Invasive species threaten canal fisheries

Types of threat...

- The enjoyment of fishing
- Commercial income from fishing rights
- Retaining angling club customers
- Ecological impacts on native species and fish predators such as kingfishers etc
- An ecological impact on wildlife at statutory protected sites including Sites of Special Scientific Interest (SSSI) and Special Areas of Conservation (SACs)
- The recruitment of the next generation of anglers

Impact of 'invasives' on canal fisheries

Species	Enjoyment of Ecologica Commercia			Distrib-	Overall
	Fishing	I threat	I threat	ution	impact
Bitterling	negligible	low	low	limited	low
Catfish (Wels)	positive?	low	medium?	limited	low
Goldfish	negligible	low	low	limited	low
Grass carp	positive	positive?	low	limited	low
Koi carp	negligible	low	low	limited	low
Sterlet	negligible	low	low	limited	low
Sunbleak	mixed	low	low	limited	low
Topmouth		low	low		low
gudgeon	negative			limited	
Zander				expandin	
	mixed*	high**	high	g	high

^{*} Some anglers would like to catch Zander from canals but overall negative

^{**} Strong evidence that Zander affect the fish community of heavily trafficked narrow canals

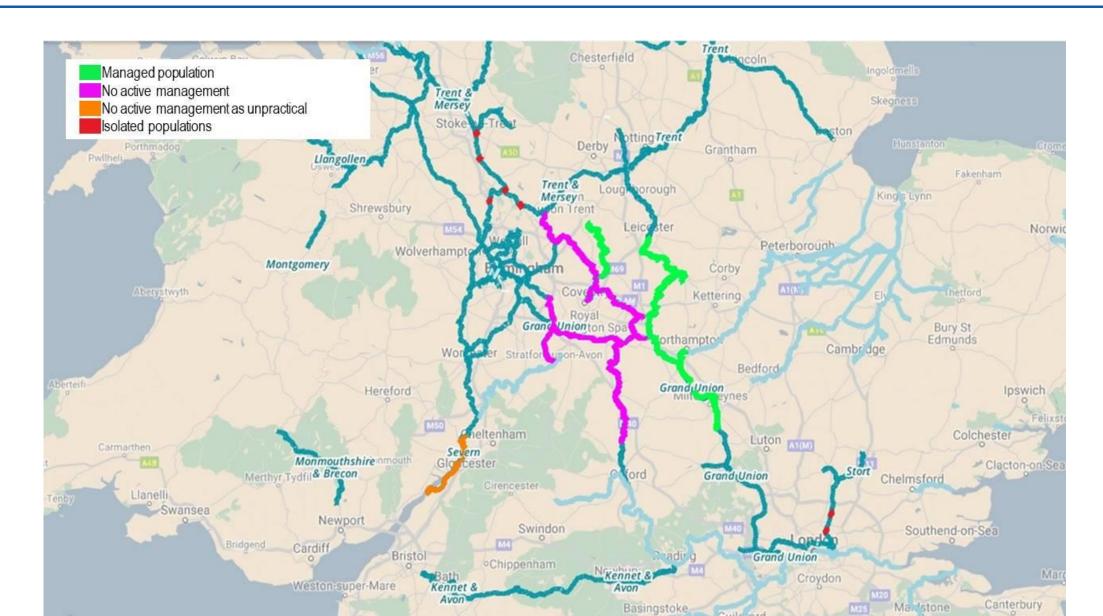
Case Study: Zander

- Do nothing and accept the impact
- Containment and isolation of population
- Limit the expansion of the population and make best use of any opportunities that arise
- Eradicate the invasive species (or reduce abundance to a level where impact is accepted)

Management options for invasives

Evidence base

- Mainly from a three year PhD study by Smith⁵ and a number of published papers ^{1-4,6,7}
- These represent the most intensive study of canal fisheries and the effect of Zander conducted so far and builds on earlier work by and Kell⁸ and Fickling⁹



Impact – approach

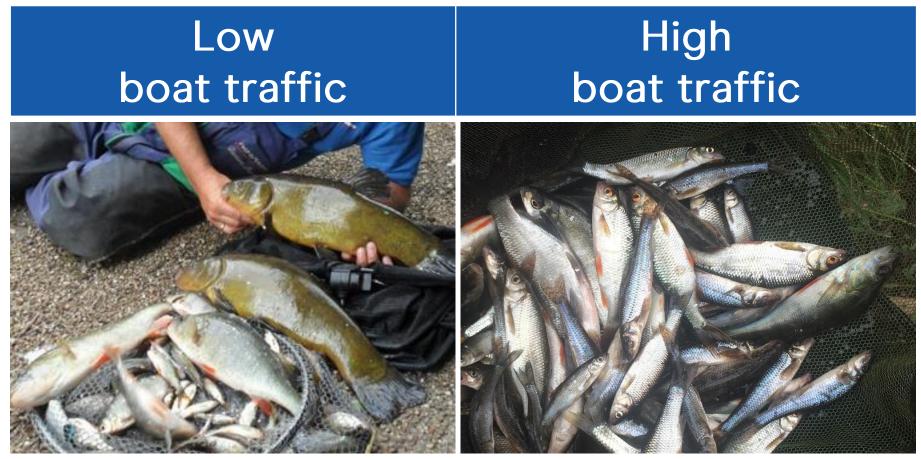
- Three year study in mid 1990s
- Compare Zander-colonised and adjacent sections
- Netting of 58 sites: 58,585 fish, 19 species
- Zander assessed via electrofishing surveys the distribution, growth and feeding based on the stomach contents of 2,733 zander
- 657 zander were tagged and movement monitored.
- Experimental population dynamics 3 sections of canal (24.3km) on 5 occasions over a 24-month period

Distribution of Zander in the canals

Boat traffic

Main factor to determine fish populations in narrow canals

Boat traffic


Main factor to determine fish populations in narrow canals

	Low boat traffic	High boat traffic	
Water	Clear	Turbid	
Vegetation	Plenty	Little	
Typical fish community	roach, perch, bream, tench, pike and carp	mainly roach and gudgeon with few perch and bream	

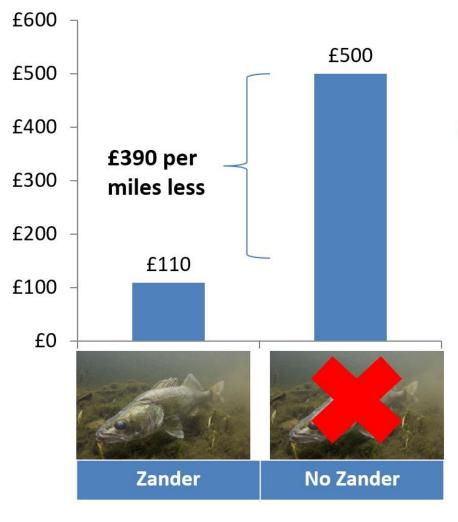
Main factor to determine fish populations in narrow canals

*old photo use for illustration purposes only



Impact of Zander

	Low Boat Traffic	High Boat Traffic	
Zander biomass	Low	High	
Impact on other fish	Little	Reduce abundance of fish < 100mm	
Impact on fishery	No direct impact	75% catch <100mm Causes a decline	
Zander angling	Positive	Positive	



Suggested impact on fish and catch

Commercial impact (Income / mile)

Eg. Grand Union Canal 2018

Caveats

- Decline in angling?
- 2017/8 15% decline in rod licence sales 2017/8
- Lets Fish events on zander
 established venues are difficult to
 hold successfully as it's impossible
 to catch sufficient numbers of small
 fish throughout the day

Lure Anglers Canal Club

Manging zander populations

An economic perspective of why £97k pa

Canal	Established	Type of	Estimated loss of
	population	Impact	fishery income
Grand Union, Three Locks to Braunston	36 miles	Fishery	£14,040
tunnel			
Grand Union, Norton Junction to Kilby	31 miles	Fishery	£12,090
Bridge			
Grand Union, Braunston to Knowle	50 miles	Fishery	£19,500
Coventry Canal plus adjacent areas	42 miles	Fishery	£16,380
North Oxford Canal	27 miles	Fishery	£10,530
Ashby Canal	22 miles	Ecological	(minor fishery
			loss)
South Oxford Canal Napton to Kidlington	38 miles	Fishery	£14,820
South Stratford Canal	24 miles	Fishery	£9,360
Gloucester & Sharpness Canal	17 miles	Minor	-
	287 miles		£96,720

Options for the removal of zander

Use of electric fishing

- Three year study of Zander population dynamics
- To significantly reduce the abundance of zander using electrofishing then 80% of the breeding adults would have to be removed every year for three-five years, then repeated
- This is because electrofishing has a low efficiency for capturing small (< 20cm) zander
- With recent advances in the effectiveness of electrofishing equipment, Boom boats with booms covering the width of the width of the canal plus use of a back boat twice per year could be sufficient now

Could we eradicate Zander?

- We can't realistically eradicate large, well-established zander populations without draining sections of the system entirely but we could/can reduce abundance
- We can prevent the establishment of new, small isolated populations using repeat electro-fishing
- To significantly reduce the abundance of zander using electrofishing then 80% of the breeding adults would have to be removed every year for three-five years. Based on the equipment available in the mid 1990s this meant that culling would need to be repeated at least three times a year
- With recent advances in the effectiveness of electrofishing equipment, twice per year could be sufficient now

Financial viability of Zander eradication?

- Not financially viable to eradicate
- The rate of natural colonisation of the canal system by zander could be significantly slowed down or stopped by electrofishing those sections that contain Zander focussing at the edge of their range
- Both the Canal & River Trust, EA, other conservation bodies and the clubs that rent fishing rights on the middle Grand Union are anxious to avoid further southerly spread
- Where we have had recent illegal introductions on the Trent & Mersey and Staffordshire & Worcester clubs are anxious to avoid establishment of new populations

Clarification of the legal situation

- Increase in numbers of anglers wanting catch and release
- DEFRA classification as a non-native invasive species
- As the law stands any Zander or other non-native fish caught, whether in fish rescues or by anglers must not be returned to the canal network as set out in (Sec 14 Sched 9 Wildlife & Countryside Act, and Regulation 6 & Regulation 8 of (KIFR)
- The W&CA makes it an offence not to carry out work to improve/maintain the condition of a SSSI e.g. Ashby Canal
- The W&CA is enforced by the police and EA/NRW enforce KIFR
- In 2015, the Trust applied to develop a Midland canal Zander zone where Zander could be returned but unfortunately this was not granted

Management of Zander

- 1) Active management by removal of Zander
 - a) To limit further expansion eg. Grand Union Canal mainline from the Long Buckby flight southwards to the known southern limit of Zander and to support recovery of roach stocks
 - b) In response to periodic reports of isolated illegal introductions eg. Trent & Mersey Canal and Staffordshire & Worcester Canal
 - c) Removal of Zander from canals were SSI status could be threatened eg.

 Ashby Canal and Leicester line summit which is adjacent to the Kilby-Foxton SSSI
- 2) No active management of Zander populations where removal is not practical or there is little, or no, effect on the fishery and the SSSI status of the canal is unlikely to be affected by Zander eg. Gloucester and Sharpness Canal
- 3) Seek to enable a legal basis for the catch and return of Zander from certain Midlands canals were populations are established and SSSI status is not likely to be affected

Summary

- Canal & River Trust
- Invasive species and types of threat
- Case study on Zander

Many thanks

References

- 1. Smith, P.A (2006) Cost-effective survey of fish by the intensive netting of a linear canal in the Midlands (UK). CIWEM J., 19 (3), 71-78.
- 2. Smith, P.A (2003) A cost effective survey of fish occurring in a linear waterbody CIWEM J., 17 181-186.
- 3. Smith, P.A. (2002) The relationship between stock and catch and the effect of bait on catch as determined for a UK recreational catch and release fishery. Fish. Manage. Ecol. 9, 261–266
- 4. Smith, P.A. (1998) A financial appraisal of management options for fisheries colonized by zander, an introduced piscivorous fish. Proceedings of the 1998 Institute of Fisheries Management Annual Conference, Cambridge.
- 5. Smith, P. A. (1998) The impact and management of Zander (Stizostedion lucioperca L.), an introduced piscivorous fish, in UK Canals, PhD Thesis, The University of Liverpool. 252pp.
- 6. Smith, P. A., Leah, R. T. and Eaton, J. W. (1998) A review of the current knowledge on the introduction, ecology and management of zander in the UK. In "Stockings and introduction of fish". Edited by I. G. Cowx. Fishing News Books. Oxford. pp 209-224.
- 7. Smith, P. A., Leah, R. T. and Eaton, J. W. (1996) Removal of pikeperch (Stizostedion lucioperca L.) from a British Canal as a management technique to reduce impact on prey fish populations. Annales Zoologici Fennici 33: 537-546.
- 8. Kell, L. (1985). The impact of an alien piscivore (Stizostedion lucioperca L.) on a British fishery. PhD Thesis. The University of Liverpool. 420pp.
- 9. Fickling, N. J. (1982). The ecology of the pikeperch. MPhil Thesis. University of Aston, Birmingham. 394pp.